Temperature-Dependent Nanofabrication on Silicon by Friction-Induced Selective Etching
نویسندگان
چکیده
Friction-induced selective etching provides a convenient and practical way for fabricating protrusive nanostructures. A further understanding of this method is very important for establishing a controllable nanofabrication process. In this study, the effect of etching temperature on the formation of protrusive hillocks and surface properties of the etched silicon surface was investigated. It is found that the height of the hillock produced by selective etching increases with the etching temperature before the collapse of the hillock. The temperature-dependent selective etching rate can be fitted well by the Arrhenius equation. The etching at higher temperature can cause rougher silicon surface with a little lower elastic modulus and hardness. The contact angle of the etched silicon surface decreases with the etching temperature. It is also noted that no obvious contamination can be detected on silicon surface after etching at different temperatures. As a result, the optimized condition for the selective etching was addressed. The present study provides a new insight into the control and application of friction-induced selective nanofabrication.
منابع مشابه
Nanofabrication on monocrystalline silicon through friction-induced selective etching of Si3N4 mask
A new fabrication method is proposed to produce nanostructures on monocrystalline silicon based on the friction-induced selective etching of its Si3N4 mask. With low-pressure chemical vapor deposition (LPCVD) Si3N4 film as etching mask on Si(100) surface, the fabrication can be realized by nanoscratching on the Si3N4 mask and post-etching in hydrofluoric acid (HF) and potassium hydroxide (KOH) ...
متن کاملMaskless and low-destructive nanofabrication on quartz by friction-induced selective etching
A low-destructive friction-induced nanofabrication method is proposed to produce three-dimensional nanostructures on a quartz surface. Without any template, nanofabrication can be achieved by low-destructive scanning on a target area and post-etching in a KOH solution. Various nanostructures, such as slopes, hierarchical stages and chessboard-like patterns, can be fabricated on the quartz surfa...
متن کاملFabrication mechanism of friction-induced selective etching on Si(100) surface
As a maskless nanofabrication technique, friction-induced selective etching can easily produce nanopatterns on a Si(100) surface. Experimental results indicated that the height of the nanopatterns increased with the KOH etching time, while their width increased with the scratching load. It has also found that a contact pressure of 6.3 GPa is enough to fabricate a mask layer on the Si(100) surfa...
متن کاملMaskless micro/nanofabrication on GaAs surface by friction-induced selective etching
In the present study, a friction-induced selective etching method was developed to produce nanostructures on GaAs surface. Without any resist mask, the nanofabrication can be achieved by scratching and post-etching in sulfuric acid solution. The effects of the applied normal load and etching period on the formation of the nanostructure were studied. Results showed that the height of the nanostr...
متن کاملNondestructive nanofabrication on Si(100) surface by tribochemistry-induced selective etching
A tribochemistry-induced selective etching approach is proposed for the first time to produce silicon nanostructures without lattice damage. With a ~1 nm thick SiOx film as etching mask grown on Si(100) surface (Si(100)/SiOx) by wet-oxidation technique, nano-trenches can be produced through the removal of local SiOx mask by a SiO2 tip in humid air and the post-etching of the exposed Si in potas...
متن کامل